Statistical consistency of the data association problem in multiple target tracking
نویسندگان
چکیده
منابع مشابه
Multiple target tracking using Sequential Monte Carlo Methods and statistical data association
This paper presents two approaches for the problem of Multiple Target Tracking (MTT) and specifically people tracking. Both filters are based on Sequential Monte Carlo Methods (SMCM) and Joint Probability Data Association (JPDA). The filters have been implemented and tested on real data from a laser measurement system. Experiments show that both approaches are able to track multiple moving pers...
متن کاملMarkov Chain Monte Carlo Data Association for Multiple-Target Tracking
This paper presents Markov chain Monte Carlo data association (MCMCDA) for solving data association problems arising in multiple-target tracking in a cluttered environment. When the number of targets is fixed, the single-scan version of MCMCDA approximates joint probabilistic data association (JPDA). Although the exact computation of association probabilities in JPDA is NP-hard, we prove that t...
متن کاملMonte Carlo data association for multiple target tracking
The data association problem occurs for multiple target tracking applications. Since non-linear and non-Gaussian estimation problems are solved approximately in an optimal way using recursive Monte Carlo methods or particle filters, the association step will be crucial for the overall performance. We introduce a Bayesian data association method based on the particle filter idea and the joint pr...
متن کاملMultiple Target Tracking Using Reverse Prediction Weighted Neighbor Data Association
Abstract A new data association method is presented for multiple target tracking. The proposed method is formulated using reverse prediction weighted neighbor to calculate the probability of candidate measurements from targets. The purpose of the proposed method is to eliminate the need to acquire prior knowledge such as detection probability and clutter density. The probability between targets...
متن کاملA constrained optimal data association for multiple target tracking
One of the major problems in multiple target tracking is to obtain an accurate association between targets and noisy measurements. We introduce a new scheme, called Constrained Optimal Data Association (CODA), that finds the optimal data association by a MAP estimation method and uses a new energy function. In this scheme, the natural constraints between targets and measurements are defined so ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2011
ISSN: 1935-7524
DOI: 10.1214/11-ejs639